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Abstract—To minimize the execution time of an iterative be identified, may change dynamically and may lead to large
application in a heterogeneous parallel computingvariations in the subtask’s processing requirements.
environment, an appropriate mapping scheme is needed for |n such situations, aemi-static methodology [1], [2] may
matching and scheduling the subtasks of the application ontge employed, that starts with an initial mapping but
the processors. When some of the characteristics of thg@ynamically decides whether to remap the application with a
application subtasks are unknovenpriori and will change  mapping previously determined off-line. This is done by
from iteration to iteration during execution-timesami-static Observing, from one iteration to another, the effects of the
methodology can be employed, that starts with an initialchanging characteristics of the application’s input data, called
mapping but dynamically decides whether to perform adynamicparameters, on the application’s execution time. Such
remapping between iterations of the application, by observingeal-time input-data dependent remapping between iterations
the effects of theselynamic parametersn the application’s can be performed by using an off-line determined mapping.
execution time. The objective of this study is to implement andThat is, the operating system will be able to make a
evaluate such a semi-static methodology. For analyzing th@euristically-determined decision during the execution of the
effectiveness of the proposed scheme, it is compared with tw@pplication whether to perform a remapping based on
extreme approaches: a completely dynamic approach using iaformation generated by the application from its input data. If
fast mapping heuristic and an ideal approach that uses a geneti§e decision is to remap, the operating system will be able to
algorithm on-line but ignores the time for remapping. select a pre-computed and stored mapping that is appropriate
Experimental results indicate that the semi-static approaleor the given state of the app”cation_ This remapping process
outperforms the dynamic approach and is reasonably close igill, in general, require a certain system reconfiguration time
the ideal but infeasible approach. for relocating the data and program modules.

1 Introduction The application to be mapped is iterative and each iteration
is modeled by a DAG in which the nodes represent subtasks and
the edges represent the communications among subtasks. The

"model used for an application task is described in Section 2. The

ttributes associated with the DAG, such as the computation

me of a subtask and the communication time between

Heterogeneouscomputing HC) encompasses a great

a particular application domain in which (1) an iterative
application is to be mapped onto an associated specific type q

dedicated heterogeneous parallel hardware platform and (2) trg btasks, are modeled by equations that are functions of the

Z’éeg;ijgor:amhea:g)'tg;ast:lobr;a?kz l¥30 rg?;?nsqggigengaeccﬂ{;ﬁe namic parameters. Examples of dynamic parameters include
yclic graph DAG : tpe contrast level of an image, the number of objects in a scene,

time of such an iterative application on a heterogeneous paralltj;jlnd the average size of an object in a scene. Thus, as the
computing environment, an appropriateapping scheme is dynamic parameters change from one iteration (one image) to
needed for matching and scheduling of the subtasks ('Jnt.o tht e next iteration, the mapping currently in use may not be

processors [12]. However, when some of the characteristics uitable and a remapping of the subtasks onto the processors

o eraton to feration during execution-me. i may not be ™2 Need o be performed. However, performing a remapping
9 ’ Y requires a certain system reconfiguration time. Given the

feasible or desirable to use the same off-line derived mappin%urrem mapping, a new mapping, and the system estimated

throughout the whole execution of the gppll(_:atlor?. ) reconfiguration time, the operating system has to decide
An example of such a problem domain is iteratatgomatic  \yhether a remapping is to be done. This framework can be

target recognition ATR) tasks [14], where a sequence of gpplied to any task graph structure represented as a DAG.
images is received from a group of sensors and various kinds of The obijective of this study is to implement and evaluate a

operations are required to generate an ON-going - SCENE. mi-static methodology, called the on-line use of off-line
description. In ATR, the characteristics of a subtask S inputyived mappings (denoted 8m-Off in subsequent sections),
data, such as the amount of clutter and the number of objects hich was originally proposied in [2]. The implementation of

the On-Off methodology entails tackling two research issues:

This research was supported by the HKU CRCG, the Hong Kong Research (a) how to select representative mappings off-line for on-line
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To address these issues, a novel dynamic parameter spacemmunicate is the same (see Figure 1(b)). For simplicity, it is
partitioning and sampling scheme is proposed in Section 3assumed that if a data-parallel implementation of a given
During the off-line phase, a genetic algorithm is used tosubtask useswrtual machine of processors, all processors will
generate high quality mappings for a range of values for théoe of the same type. Given this and the symmetry property of
dynamic parameters. During the on-line phase, the actuahe inter-processor communications among processors of the
dynamic parameters are observed and the off-line derivedame type, the expected execution time of a particular
mapping table is referenced to choose the most suitablenultiprocessor implementation of a subtask is independent of
mapping. Experimental results, presented in Section 4, indicatehich fixed-size subset of the processors of a given type are
that this semi-static approach is effective in that it consistentlyassigned to execute the subtask.
gave performance that was comparable to that of using the same An application task is modeled as a DAG, withnodes
genetic algorithm on-line with the exact dynamic parametelrepresenting subtaskss, 0gi<n-1 ) an@& edges
values for thenextiteration (which is physically impossible). representing inter-subtask communications. To illustrate the
How this research differs from earlier related work, such as [8],efﬁcacy of the On-Off semi-static mapping approach, a
[9], [10], [17], and further details about all aspects of this papersimplified model is used for subtask execution time and inter-
are in [7]. subtask communication time. However, the On-Off framework
2 System Model does not depend on the form of the equations used and it is the

) ) ) responsibility of the application developer to use an appropriate
To evaluate the On-Off semi-static mapping methodology model [1], [2].

a particular sample architecture is chosen; however, the On-Off
method can be adopted for other target architectures. ThgV

EZ?epolleotr?rt%eet Zite;gtiznﬁggsscg;nfﬁkng pkﬁgg{irgn(;otnhséfgéd 5arallelization overhead (e.g., synchronization and
P pp ommunication). The serial and parallel fractions of a subtask

Interest to the U'S.' Army Research Laboratory (e.g., [3])'are frequently represented using similar models (e.g., [11]). The
Specifically, it contains four different types of processors (e.g., xecution time expression for subtask  includes: (a) three
SHARC DSP processors and PowerP(; RISC processors [4] ynamic parameters, B, ayd , (b) the number of processors
with 16 processors of each type (see Figure 1(a)). used, p , and (c) three coefficienta, b, and [7]. The

The processors are connected via crossbar switches in suglra|lelfraction andserialfraction of subtasls,  are represented
a way that each processor has exactly one input port and ong; 5./ p andc,y , respectively. Thearallelizatioroverhead is
output port. Communications among processors of the saM@presented bybBlogp ant, s thesterogeneityfactor,
type are assumed to pe symmetric in the sense that the Co”ﬂi%dicating the relative speed of the subtask  on the type of
free time for any pair of processors (of the same type) tOyrocessor used in virtual machineThe execution time,(s)

The simple execution time expression used in this model is
ersion of Amdahl’s law extended by a term representing the

of subtasks; on virtual machineis modeled by the expression:
?? ?? ty(s) = hiy(aa/p+bflogp + cy)
processor processor
type 0 >< >< type 1 By differentiating this equation and equating it to zero, the
17 port 17 port opt!mal value op }hat leads to the minimum execu.tion time. fqr
crossbar crossbar a given subtask ig,, £aa)/(bB) . The mapping heuristic
switch switch will not assign more processors than a subtagl;s
(@) It is assumed that the size of the data to be transferred
>< between two subtasks arg]  consists of a fixed portion
modeled by a constard;  (independent of the input) and a
(|3 ? grgg;tbar (|3 ? variable portion modeled by the product of a coefficiept  and
processor switch processor a dyn.amlc parameten . For communication betweerl virtual
type 3 >< >< type 2 machinesu andv, S,, andR,, are thenessagestart-uptime
and thedatatransmissiomate, respectively (see Figure 1(b) for
17 port 17 port values ofS,, andR,, based on [3], [4]). Thus, the inter-subtask
g\r,\%ts;?ar g\r,\%ts;?ar communication between subtask  on virtual machirgnd
subtasks; on virtual machine is C,, which is given by:
type 0 type 1 type 2 type 3 ) = . » -
(b) | s 1R S RS RS IR Curls:3) S‘_”Jr(d”, N F_z‘”'
typeO | 092 041 904 372 1047 558 2247 1116 3 The Semi-Static Mapping Approach
type 1 904 372 083 037 462 044 700 744 Consider two approaches for remapping application tasks to
type2 | 1047 558 462 044 086 045 1137 638 processors during execution time (between iterations through
type3 | 2247 1116 7.00 744 1137 638 083 053 the DAG):

Figure 1: (a) The target heterogeneous computing platform < dynamic mapping: Based on the current values of dynamic

consisting of four types of processors with 16 in each type;  parameters, compute a new mapping in real time using a low
(b) startup time $ and transmission time per unit datdR) complexity algorithm

of the inter-processor communication channels. . . ) ) )
« on-line use of off-line derived mappings¥or each dynamic



parameter, some representative values are chosen so thatteration. The on-line module has to determine a mapping for
number of possible scenarios are generated. Using an off-lingerationi based on the dynamic parameter values of iteration
(i.e., static) heuristic, high-quality mappings for the scenariosi — 1. In the On-Off semi-static mapping approach, given the
are precomputed and stored in a table. During execution oflynamic parameter values of iterationl , the on-line module
the application, the mapping corresponding to the scenarioetrieves the mapping corresponding to the representative
with values of dynamic parameterdosest tothe actual dynamic parameter vectofosest tahe given actual values. If
values is selected from the table to be a possible newhe stored pre-determined execution time of the selected
mapping [5]. mapping, plus the estimated reconfiguration time, is smaller
Because a static mappmg heuristic (e_g_, the genetiéhan the (Simulated) actual execution time of iteratienl , a
algorithm used in this study) can potentially generate solutionéémapping is performed; otherwise, the mapping used at
of much h|gher qua“ty than a dynamic mappmg a|gorithm, it isiterationi —1 will continue to be used for iteration
interesting to investigate how well the approach of on-line use In this study, several mapping approaches are examined.
of off-line derived mappings (using the genetic algorithm) The first approach is a dynamic approach that uses a fast
performs. Notice that even off-line generation of optimal heuristic that takes a small amount of time but generates a
mappings is infeasible because the heterogeneous mappimgasonably good solution. The heuristic used is a fast static
problem is NP-complete [6] and, thus, exponential time isscheduling algorithm, called the Earliest Completion Time
needed for finding optimal solutions. (ECT) algorithm, that is based on the technique presented in
In the On-Off semi-static mapping approach, it is assumed15]-
that the ranges of the dynamic parameters are known, and are The method of using the ECT algorithm for scheduling the
partitioned into a certain number of disjoint regions. Formally,dynamic iteration tasks is as follows. The ECT algorithm is
suppose the minima and total range sizes of the dynamiepplied (in real time) to the task graph with the values for the
parameters are given W, Bmin Ymin Hmin Ca Cp {, ~and dynamic parameters at iteration-1 . The resulting mapping
(., respectively. The parameter spaie can be partitionedwith its associated estimated task execution time using the
into K* disjoint regions as follows: iterationi —1 parameters) is then considered to be a potential
ad,jk. 1) = {(a, B, v, W)}, 0<i,j,kl<sK-1 new mapping for iteratiom . Again, if the gain in adopting the
new mapping is greater than the reconfiguration time, the new
where o, +i{,/K<a<a,,+(i+1){,/K , and the ranges mapping will be used in iteration
for B, y, andp are defined analogously. Here, the parameter Genetic algorithms GAs) are a promising heuristic
space is uniformly partitioned. However, different values<of  approach to optimization problems that are intractable. There
can be used for each dynamic parameter, depending upon thge a great variety of approaches to GAs (see [13] for a survey).
specifications given by the application developer. The details of our particular GA are available in [7], [16].
Within each region (defined by specifying values for However, it should be noted that the On-Off approach does not
indices i, j,k,I ), N random dynamic parameter vectors arerely on GAs per se and can be used with any global optimization
chosen. An off-line heuristic is then applied to determine thescheme.
mappir)gs for these sample scenarios represented by differegft Performance Results
dynamic parameter vectors. For a random sample vegtor
(0= x< N-1), denote the corresponding mappingMy . The  Four approaches were compared in the experiments: (i) the
mapping for each sample scenario is exhaustively evaluated fd@n-Off approach; (i) theECT algorithm as a dynamic
every other sample scenario in the region by applying thescheduling algorithm; (iii) the infeasible approach of using the
mapping to the DAG and computing the completion time. ThatGA as a dynamic scheduling algorithm (referred tdza#s On-
is, the task execution times(M,(v)) for ak  ang line); and (iv) an ideal but impossible approach which uses the
(0= x, y< N-1) are computed. The mapping,  that gives GA on-line with the exact (as yet unknown) dynamic
the minimum average completion tini§ '~ t(M,(v,))]/N  is parameters for the iteration to be executed (referred Idess).
chosen as the representative mapping for the corresponding To investigate the performance of the On-Off approach with
region in the dynamic parameter space. This representativihe proposed dynamic parameter space partitioning and
mapping and the corresponding average completion time areampling methods, task graphs with four different structures
stored in the off-line mapping table, which is a multi- were used. These graphs included in-tree graphs, out-tree
dimensional array indexed byj,k,I . graphs, fork-join graphs, and randomly structured graphs.

The input to the simulated on-line module consists of an  Graphs with sizes 10, 50, 100, and 200 nodes were
execution profile that comprises a certain number of iterationgonsidered. For each graph structure and size, ten graphs were
of executing the task graph. Examples of execution profilesused in the simulation studies. Thus, a totadef4 x 10 = 160
containing 20 iterations are shown in Table 1 in Section 4. Indifferent graphs were generated.
each profile, the dynamic parameter values change from one | each graph, the coefficients of the subtask execution time
iteration to_another. Specifically, row represents the values Ofaquation @ b, ,and, )andinter-subtask communication time
the dynamic parametenbservedafter execution of the graph equation ¢, ands; ) were randomly generated from uniform
for iterationi is finished. Thus, when execution of the task for §istriputions with ranges [10..100] and [1..10], respectively.

iteration i begins, the on-line module does not know theThe heterogeneity factors of these graphs were also randomly
(simulated)actual values of the dynamic parameters for that sejected from a uniform distribution with range 0.5 to 20.



Details of random task graph generation are given in [7].

The heterogeneous platform shown in Figure 1 was used
throughout the experiments. Below are the parameters used in

Table 1: Execution profiles of dynamic parameters:
Profile A (average percentage change in dynamic
parameter value = 5%) and Profile B = 40%).

the experiments, unless otherwise stated. fteraon | a By W teraion |oa By
. ra_nges of thg dynamic parametfaurs: : [1,000..5,000], 0 %00 15 300 60 5 3000 15 300 60
B:[5..25],y : [100..500], angt  :[20..100] 1 | 2821 15 287 63 1 | 4309 15 409 82

* partitioning of the dynamic parameter space: the range of 2949 12 302 65 2 2635 7 268 43
each dynamic parameter is partitioned into four equal 3 3073 12 286 68 3 3894 6 361 27
intervals (i.e., K = 4 ) and, therefore, the mapping table 4 3228 11 213 71 4 2241 8 197 39
stores4® = 256 mappings (i.e., there are 256 regions inthe 5 3090 13 258 67 5 1265 12 287 52
four dimensional space) 6 325 11 272 70 6 1699 16 420 75
« number of randomly chosen sample scenarios within each 7 | 3424 16 259 73 7| 1138 11 282 50
partition (hyper-rectangle) of the dynamic parameter space: g ggﬂ ig ;éé ;2 g ;gg: 13 ;g: g;
ten (i.e,N =10) . . 10 |4014 17 245 81 10 |3198 10 332 51
* the GA is executed ten times for each sample scenario, from 11 | 4229 13 257 77 11 | 4678 18 417 73
which the best mapping is chosen (thus, for a single graph, 12 3994 19 242 80 12 2588 8 315 48
the GA was executed a total &4 x N x 10 = 256x 10x 10 13 4179 15 253 83 13 1358 16 211 67
= 25,600 times to build the mapping table) 14 | 4386 15 264 78 14 1794 17 307 98

« estimated reconfiguration time: 1,000 (calculation of the 15 |[4208 13 249 8 15 | 2605 11 163 61
estimated reconfiguration time is discussed in [2]) 16 14016 14 236 77 16 | 3719 17 240 87

: - i 17 | 3835 16 226 81 17 | 24718 9 332 53

* crossover and mutation probabilities for the GA: both 0.4 4026 19 238 84 18 1507 16 466 76
(these values were chosen according to the light/moderate 19 | 4058 16 251 88 19 | 2081 8 243 50
load results in [16]) 20 | 4479 15 265 92 20 |3053 17 149 70

Two randomly generated 20-iteration execution profiles of (a) Profile A (b) Profile B

dynamic parameters were used for each graph (see Table 1).

The dynamic parameters for Profile B change eight times more
rapidly, on average, than those for Profile A. In the profiles,
iteration O is the initialization iteration. In this study, the
dynamic parameter values of iteration O are chosen to be the

new mapping considered is the mapping corresponding to the
scenario closest to the parameters at iterafierl in the
mapping table. In the case of ECT, the new mapping

considered is the one determined using the ECT algorithm

mean values of the respective dynamic parameter ranges. Thewith the exact dynamic parameters at iteratieri

dynamic parameter values shown on iterafion > @ ) simulate
the actual dynamic parameter valuglsservedafter the task
graph finishes iteration  execution. Both Profile A and Profile

B are generated randomly based on a single parameter: theparameters at iteration- 1

mean percentage change in dynamic parameter values, falled
Specifically, givemd, an increment facto, _, , was randomly
chosen from a uniform distribution witharange [8,3..54],
and its sign had a 0.5 probability of being positive (but selected
to guarantee that the dynamic parameter stays within its range).
Then, a dynamic parameter for iteration , 98y , was given
by: Wi = Wi_1 28 1Hi_s-

To examine the performance of the On-Off approach, first

consider the results of scheduling a ten-node random task graQhy(GJi-1]): this is the task execution time of iteratidn

using the two execution profiles. The parameters of the ten-
node random task graph are shown in Figure 2. Detailed results
of using the four approaches for Profile B are shown in Table 2.
Due to space limitations, results for Profile A are not shown
here but can be found in [7]. Below are the definitions of the
data columns.

 t(M[i-1]): this is the task execution time of iteration  using
the mappingchosenat the end of iteration—1 , denoted by
M[i=1]. Here, it should be noted that at the end of iteration
i —1, a new mapping will be determined but such a mapping
would not be used for iteration  if the reconfiguration time
offsets the gain of remapping. Thus, a mapping chosen at the
end of iterationi—1 could be a new mapping or the same
mapping used for iteration—1 . In the case of On-Off, the

t'(O[i-1]): this is the task execution time of the mapping
stored in the off-line mapping table, denoted®fi—1], of a
scenario with dynamic parameters closest to the dynamic
. This is the value stored in the
mapping table, instead of the task execution time by applying
O[i-1] to the dynamic parameters at iteratior-1 . The
mapping O[i—1] may or may not be chosen for iteration

RC: the reconfiguration time, if remapping is performed.
t(E[i-1]): this is the execution time of the mapping
determined using the ECT algorithm with the parameters at
iterationi —1 , denoted b¥[i-1], which may or may not be
chosen for iteratiom

by
applying the mapping determined by the GA with dynamic
parameters at iteration —1 , disregarding whether the
remapping is justified by the gain or not. Also, the mapping
found at iterationi—1 is incorporated in the initial
population of the GA at iteratiom . Reconfiguration time is
not counted in this approach. Again, ti@g\ On-line method

is included for comparison only because applying the GA on-
line for dynamic scheduling is not feasible due to the long
execution time required by the GA. It should be noted that
for both Ideal and GA On-line, reconfiguration time is not
considered.

t(G[i]): this is the task execution time of iteration
determined using the GA with the exact dynamic parameters
at iterationi . This is, therefore, the ideal case which is



coefficients heterogeneity factors d; 8
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Figure 2: (a) Coefficients of the subtask execution time equation and heterogeneity lfigctors
the subtask execution times; (b) coefficients of the inter-subtask communication data equations.

impossible in practice because the actual values of théo changes.

dynamic parameters for iteratian  cannot be known before  Some additional experiments using larger graphs were also
the execution of iterationi  begins. Furthermore, theconducted to further test the effectiveness of the sampling
solutions found by both the On-Off and the GA On-line strategy used. Specifically, ten 50-node random graphs were

approaCheS are also inCOprfated into the initial population Oﬁsed and the f0||owing different approaches to generate
the GA. This is done in order to determine the “best” solution representa’[ive mappings were Compared:

as a reference for comparison. « the mid-point of the hyper-rectangle is chosen as the only
As can be seen from Table 2, the On-Off approach of sample scenario for generating the representative mapping
dynamically using off-line derived mappings generated much (calledScheme 1);
smaller total execution time (995,987) compared to that of, 5 randomly selected point within the hyper-rectangle is
using the ECT algorithm (1,447,666). The On-Off approach :nosen as the only sample scenario (clelteme 2);

F:onsis_tently resulte.d in performance comparable to the 1en sample scenarios in the hyper-rectangle are examined but
infeasible GA On-line scheme and was only marginally {, each sample scenario the GA is executed without

outperformed by the Ideal (butimpossible) method. Indeed, one j, . ryorating the solution generated by the ECT algorithm as
very interesting observation is that at some iterations, the On- o ‘ot the members in the initial population (and the

Off approach generated shorter mapping execution time than o 5inas of the ten sample scenarios are applied to all other
the GA On-line due to the On-Off approach being more robust sample scenarios in the hyper-rectangle, with the mapping

Table 2: Results for the ten-node random graph using Profile giving the best average performance selected) (called

B (“total” below is the task execution time for 20 iterations). Scheme 3);
GA « the approach used throughout all previous experiments—Ilike
on-Off ECT onine  Ideal Scheme 3 except the GA is executed with the ECT solution
i (ML) C(O[-I)RC | (ML) (E[-1]) RC | 1G] (Gl as one of the seed chromosomes (cMme 4).
The above four approaches were applied to the ten 50-node
0 . 54391 1000 | — 76029 1000 | — 47980 random graphs using Profile A and the total mapping execution
1 61988 69217 0 | 107754 103630 1000 | 66150 61988 i ted. Th f th tion ti
2 6411 38707 0 | ‘63008 61852 1000 | 45692 34972 imes were noted. The averages of these execution times were
3 49142 45126 1000 | 72559 79625 O | 44712 40318 determined and the results were normalized with respect to
4 43516 26908 1000 | 51686 51648 O | 38337 28418 those of Scheme 4. The results obtained are as follows: 1.23
5 38740 34726 1000 | 64508 49440 1000 | 35719 32825 (Scheme 1), 1.19 (Scheme 2), 1.16 (Scheme 3), and 1.00
6 | S0402 48248 1000 | 74503 74365 0 | 44250 29231 (Scheme 4). Thus, using just one sample scenario is not as
7| 34390 50402 0 | 50107 49296 0 | 29842 27753 effective as using ten. The degradations are indeed quite
8 4194733684 1000 62863 45772 1000 | 48713 31601 significant. Furthermore, the degradation is higher if the mid-
9 45940 48911 0 | 83088 85888 0 | 48095 44184 gnificant. ' 9 : 9N
10 | 57662 48178 1000 | 75503 76404 O | 55606 42139 point instead of a randomly selected point within the hyper-
11 64180 62401 1000 | 111327 112449 0 | 69058 61897 rectangle is used. These results lead to the conclusion that the
12 39930 42374 0 | 67829 68907 0 | 40476 39930 relationship between the parameters space and the mappings
13 46949 40904 1000 | 59054 47534 1000 | 46350 31203 space is highly irregular and, as such, more random sample
1‘5‘ ;‘gg;; ﬁig: 1888 gjggi gé;gg 10000 ‘3‘22;‘; ‘z‘éjég scenarios are needed to more accurately “characterize” a good
representative mapping for a hyper-rectangle. Finally, as
16 61211 55142 1000 | 78358 80091 O | 57254 51032 ; . ; .
17 46193 42374 1000 | 69973 72405 0 | 46243 36274 expected, the solutions of the GA without using mappings
18 56042 41947 1000 85659 72229 1000 | 55192 44846 determined by ECT are worse. Given these findings, Scheme 4
19 49145 38707 1000 | 52644 57459 0 | 47570 31678 was used throughout all subsequent experiments.
20 [ 5190 — — 68733 63337 — | 48931 43881 To investigate the effects of graph sizes and structures on
otal: | 995,987 1447 666 047 704 830,460 the performance of the On-Off approach, the experiments were

repeated for larger task graphs. As can be seen from Figure 3,
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Figure 3: Total execution times for Profile B.

the total execution times of On-Off, GA On-line, and Ideal for Applications for Intelligent Execution upon a Heterogeneous

totally random task graphs are consistently of similar values for g%‘p;;i”&g’_'ggg&‘t-"qg’gc% IEEE Intl Conf. Sys., Man, and
all graph sizes. However, the ECT approach performed muc —, “A Method for the On-Line Use of Off-Line Derived

worse, especially for large graphs with sizes 100 and 200 (in © Remappings of Iterative Automatic Target Recognition Tasks
order to enhance the readability of the plots, the data for 200- gnto a Paftlcglaf («‘llals‘; of Hfteroggg%e%% Pgr?lliggéatforms,"
node graphs of the ECT algorithm were excluded). AnP] Upercomputingvol. -.&, No- 4, pp. 36 /=240, et :

¢ ; . P. David, P. Emmerman, and S. Ho, “A Scalable Architecture
explanation for this phenomenon is that because the EC System for Automatic Target RecognitionProc. 13th AIAA/
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