
Abstract—To minimize the execution time of an iterative
application in a heterogeneous parallel computing
environment, an appropriate mapping scheme is needed for
matching and scheduling the subtasks of the application onto
the processors. When some of the characteristics of the
application subtasks are unknowna priori and will change
from iteration to iteration during execution-time, asemi-static
methodology can be employed, that starts with an initial
mapping but dynamically decides whether to perform a
remapping between iterations of the application, by observing
the effects of thesedynamic parameterson the application’s
execution time. The objective of this study is to implement and
evaluate such a semi-static methodology. For analyzing the
effectiveness of the proposed scheme, it is compared with two
extreme approaches: a completely dynamic approach using a
fast mapping heuristic and an ideal approach that uses a genetic
algorithm on-line but ignores the time for remapping.
Experimental results indicate that the semi-static approach
outperforms the dynamic approach and is reasonably close to
the ideal but infeasible approach.

1  Introduction

Heterogeneouscomputing (HC) encompasses a great
variety of situations (e.g., see [5], [12]). This study focuses on
a particular application domain in which (1) an iterative
application is to be mapped onto an associated specific type of
dedicated heterogeneous parallel hardware platform and (2) the
execution of each iteration can be represented by a directed
acyclic graph (DAG) of subtasks. To minimize the execution
time of such an iterative application on a heterogeneous parallel
computing environment, an appropriatemapping scheme is
needed for matching and scheduling of the subtasks onto the
processors [12]. However, when some of the characteristics of
the application subtasks are unknowna priori and will change
from iteration to iteration during execution-time, it may not be
feasible or desirable to use the same off-line derived mapping
throughout the whole execution of the application.

An example of such a problem domain is iterativeautomatic
target recognition (ATR) tasks [14], where a sequence of
images is received from a group of sensors and various kinds of
operations are required to generate an on-going scene
description. In ATR, the characteristics of a subtask’s input
data, such as the amount of clutter and the number of objects to

be identified, may change dynamically and may lead to large
variations in the subtask’s processing requirements.

In such situations, asemi-static methodology [1], [2] may
be employed, that starts with an initial mapping but
dynamically decides whether to remap the application with a
mapping previously determined off-line. This is done by
observing, from one iteration to another, the effects of the
changing characteristics of the application’s input data, called
dynamicparameters, on the application’s execution time. Such
real-time input-data dependent remapping between iterations
can be performed by using an off-line determined mapping.
That is, the operating system will be able to make a
heuristically-determined decision during the execution of the
application whether to perform a remapping based on
information generated by the application from its input data. If
the decision is to remap, the operating system will be able to
select a pre-computed and stored mapping that is appropriate
for the given state of the application. This remapping process
will, in general, require a certain system reconfiguration time
for relocating the data and program modules.

The application to be mapped is iterative and each iteration
is modeled by a DAG in which the nodes represent subtasks and
the edges represent the communications among subtasks. The
model used for an application task is described in Section 2. The
attributes associated with the DAG, such as the computation
time of a subtask and the communication time between
subtasks, are modeled by equations that are functions of the
dynamic parameters. Examples of dynamic parameters include
the contrast level of an image, the number of objects in a scene,
and the average size of an object in a scene. Thus, as the
dynamic parameters change from one iteration (one image) to
the next iteration, the mapping currently in use may not be
suitable and a remapping of the subtasks onto the processors
may need to be performed. However, performing a remapping
requires a certain system reconfiguration time. Given the
current mapping, a new mapping, and the system estimated
reconfiguration time, the operating system has to decide
whether a remapping is to be done. This framework can be
applied to any task graph structure represented as a DAG.

The objective of this study is to implement and evaluate a
semi-static methodology, called the on-line use of off-line
derived mappings (denoted asOn-Off in subsequent sections),
which was originally proposed in [2]. The implementation of
the On-Off methodology entails tackling two research issues:
(a) how to select representative mappings off-line for on-line
use? and (b) is this approach really beneficial compared to a
strictly dynamic approach?
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To address these issues, a novel dynamic parameter space
partitioning and sampling scheme is proposed in Section 3.
During the off-line phase, a genetic algorithm is used to
generate high quality mappings for a range of values for the
dynamic parameters. During the on-line phase, the actual
dynamic parameters are observed and the off-line derived
mapping table is referenced to choose the most suitable
mapping. Experimental results, presented in Section 4, indicate
that this semi-static approach is effective in that it consistently
gave performance that was comparable to that of using the same
genetic algorithm on-line with the exact dynamic parameter
values for thenext iteration (which is physically impossible).
How this research differs from earlier related work, such as [8],
[9], [10], [17], and further details about all aspects of this paper
are in [7].

2  System Model

To evaluate the On-Off semi-static mapping methodology,
a particular sample architecture is chosen; however, the On-Off
method can be adopted for other target architectures. The
sample target heterogeneous computing platform considered is
based on the expected needs of ATR applications that are of
interest to the U.S. Army Research Laboratory (e.g., [3]).
Specifically, it contains four different types of processors (e.g.,
SHARC DSP processors and PowerPC RISC processors [4]),
with 16 processors of each type (see Figure 1(a)).

The processors are connected via crossbar switches in such
a way that each processor has exactly one input port and one
output port. Communications among processors of the same
type are assumed to be symmetric in the sense that the conflict-
free time for any pair of processors (of the same type) to

communicate is the same (see Figure 1(b)). For simplicity, it is
assumed that if a data-parallel implementation of a given
subtask uses avirtual machine of processors, all processors will
be of the same type. Given this and the symmetry property of
the inter-processor communications among processors of the
same type, the expected execution time of a particular
multiprocessor implementation of a subtask is independent of
which fixed-size subset of the processors of a given type are
assigned to execute the subtask.

An application task is modeled as a DAG, withn nodes
representing subtasks ( ) ande edges
representing inter-subtask communications. To illustrate the
efficacy of the On-Off semi-static mapping approach, a
simplified model is used for subtask execution time and inter-
subtask communication time. However, the On-Off framework
does not depend on the form of the equations used and it is the
responsibility of the application developer to use an appropriate
model [1], [2].

The simple execution time expression used in this model is
a version of Amdahl’s law extended by a term representing the
parallelization overhead (e.g., synchronization and
communication). The serial and parallel fractions of a subtask
are frequently represented using similar models (e.g., [11]). The
execution time expression for subtask includes: (a) three
dynamic parameters, , , and , (b) the number of processors
used, , and (c) three coefficients, , , and [7]. The
parallelfraction andserialfraction of subtask are represented
by and , respectively. Theparallelizationoverhead is
represented by and is theheterogeneityfactor,
indicating the relative speed of the subtask on the type of
processor used in virtual machineu. The execution time
of subtask on virtual machineu is modeled by the expression:

By differentiating this equation and equating it to zero, the
optimal value ofp that leads to the minimum execution time for
a given subtask is = . The mapping heuristic
will not assign more processors than a subtask’s .

It is assumed that the size of the data to be transferred
between two subtasks and consists of a fixed portion
modeled by a constant (independent of the input) and a
variable portion modeled by the product of a coefficient and
a dynamic parameter . For communication between virtual
machinesu andv, and are themessagestart-uptime
and thedatatransmissionrate, respectively (see Figure 1(b) for
values of and based on [3], [4]). Thus, the inter-subtask
communication between subtask on virtual machineu and
subtask on virtual machinev is which is given by:

.

3  The Semi-Static Mapping Approach

Consider two approaches for remapping application tasks to
processors during execution time (between iterations through
the DAG):
• dynamic mapping: Based on the current values of dynamic

parameters, compute a new mapping in real time using a low
complexity algorithm.

• on-line use of off-line derived mappings:For each dynamic
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Figure 1: (a) The target heterogeneous computing platform
consisting of four types of processors with 16 in each type;
(b) startup time (S) and transmission time per unit data (1/R)
of the inter-processor communication channels.
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parameter, some representative values are chosen so that a
number of possible scenarios are generated. Using an off-line
(i.e., static) heuristic, high-quality mappings for the scenarios
are precomputed and stored in a table. During execution of
the application, the mapping corresponding to the scenario
with values of dynamic parametersclosest to the actual
values is selected from the table to be a possible new
mapping [5].

Because a static mapping heuristic (e.g., the genetic
algorithm used in this study) can potentially generate solutions
of much higher quality than a dynamic mapping algorithm, it is
interesting to investigate how well the approach of on-line use
of off-line derived mappings (using the genetic algorithm)
performs. Notice that even off-line generation of optimal
mappings is infeasible because the heterogeneous mapping
problem is NP-complete [6] and, thus, exponential time is
needed for finding optimal solutions.

In the On-Off semi-static mapping approach, it is assumed
that the ranges of the dynamic parameters are known, and are
partitioned into a certain number of disjoint regions. Formally,
suppose the minima and total range sizes of the dynamic
parameters are given by , , , , , , , and

, respectively. The parameter space can be partitioned
into  disjoint regions as follows:

where , and the ranges
for , , and are defined analogously. Here, the parameter
space is uniformly partitioned. However, different values of
can be used for each dynamic parameter, depending upon the
specifications given by the application developer.

Within each region (defined by specifying values for
indices ), random dynamic parameter vectors are
chosen. An off-line heuristic is then applied to determine the
mappings for these sample scenarios represented by different
dynamic parameter vectors. For a random sample vector
( ), denote the corresponding mapping by . The
mapping for each sample scenario is exhaustively evaluated for
every other sample scenario in the region by applying the
mapping to the DAG and computing the completion time. That
is, the task execution times for all and
( ) are computed. The mapping that gives
the minimum average completion time is
chosen as the representative mapping for the corresponding
region in the dynamic parameter space. This representative
mapping and the corresponding average completion time are
stored in the off-line mapping table, which is a multi-
dimensional array indexed by .

The input to the simulated on-line module consists of an
execution profile that comprises a certain number of iterations
of executing the task graph. Examples of execution profiles
containing 20 iterations are shown in Table 1 in Section 4. In
each profile, the dynamic parameter values change from one
iteration to another. Specifically, row represents the values of
the dynamic parametersobservedafter execution of the graph
for iteration is finished. Thus, when execution of the task for
iteration begins, the on-line module does not know the
(simulated)actual values of the dynamic parameters for that

iteration. The on-line module has to determine a mapping for
iteration based on the dynamic parameter values of iteration

. In the On-Off semi-static mapping approach, given the
dynamic parameter values of iteration , the on-line module
retrieves the mapping corresponding to the representative
dynamic parameter vectorclosest tothe given actual values. If
the stored pre-determined execution time of the selected
mapping, plus the estimated reconfiguration time, is smaller
than the (simulated) actual execution time of iteration , a
remapping is performed; otherwise, the mapping used at
iteration  will continue to be used for iteration.

In this study, several mapping approaches are examined.
The first approach is a dynamic approach that uses a fast
heuristic that takes a small amount of time but generates a
reasonably good solution. The heuristic used is a fast static
scheduling algorithm, called the Earliest Completion Time
(ECT) algorithm, that is based on the technique presented in
[15].

The method of using the ECT algorithm for scheduling the
dynamic iteration tasks is as follows. The ECT algorithm is
applied (in real time) to the task graph with the values for the
dynamic parameters at iteration . The resulting mapping
(with its associated estimated task execution time using the
iteration parameters) is then considered to be a potential
new mapping for iteration . Again, if the gain in adopting the
new mapping is greater than the reconfiguration time, the new
mapping will be used in iteration.

Genetic algorithms (GAs) are a promising heuristic
approach to optimization problems that are intractable. There
are a great variety of approaches to GAs (see [13] for a survey).
The details of our particular GA are available in [7], [16].
However, it should be noted that the On-Off approach does not
rely on GAs per se and can be used with any global optimization
scheme.

4  Performance Results

Four approaches were compared in the experiments: (i) the
On-Off approach; (ii) theECT algorithm as a dynamic
scheduling algorithm; (iii) the infeasible approach of using the
GA as a dynamic scheduling algorithm (referred to asGA On-
line); and (iv) an ideal but impossible approach which uses the
GA on-line with the exact (as yet unknown) dynamic
parameters for the iteration to be executed (referred to asIdeal).

To investigate the performance of the On-Off approach with
the proposed dynamic parameter space partitioning and
sampling methods, task graphs with four different structures
were used. These graphs included in-tree graphs, out-tree
graphs, fork-join graphs, and randomly structured graphs.

Graphs with sizes 10, 50, 100, and 200 nodes were
considered. For each graph structure and size, ten graphs were
used in the simulation studies. Thus, a total of
different graphs were generated.

In each graph, the coefficients of the subtask execution time
equation ( , , and ) and inter-subtask communication time
equation ( and ) were randomly generated from uniform
distributions with ranges [10..100] and [1..10], respectively.
The heterogeneity factors of these graphs were also randomly
selected from a uniform distribution with range 0.5 to 20.
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Details of random task graph generation are given in [7].
The heterogeneous platform shown in Figure 1 was used

throughout the experiments. Below are the parameters used in
the experiments, unless otherwise stated.
• ranges of the dynamic parameters: : [1,000..5,000],

: [5..25], : [100..500], and : [20..100]
• partitioning of the dynamic parameter space: the range of

each dynamic parameter is partitioned into four equal
intervals (i.e., ) and, therefore, the mapping table
stores mappings (i.e., there are 256 regions in the
four dimensional space)

• number of randomly chosen sample scenarios within each
partition (hyper-rectangle) of the dynamic parameter space:
ten (i.e., )

• the GA is executed ten times for each sample scenario, from
which the best mapping is chosen (thus, for a single graph,
the GA was executed a total of
= 25,600 times to build the mapping table)

• estimated reconfiguration time: 1,000 (calculation of the
estimated reconfiguration time is discussed in [2])

• crossover and mutation probabilities for the GA: both 0.4
(these values were chosen according to the light/moderate
load results in [16])

Two randomly generated 20-iteration execution profiles of
dynamic parameters were used for each graph (see Table 1).
The dynamic parameters for Profile B change eight times more
rapidly, on average, than those for Profile A. In the profiles,
iteration 0 is the initialization iteration. In this study, the
dynamic parameter values of iteration 0 are chosen to be the
mean values of the respective dynamic parameter ranges. The
dynamic parameter values shown on iteration ( ) simulate
the actual dynamic parameter valuesobservedafter the task
graph finishes iteration execution. Both Profile A and Profile
B are generated randomly based on a single parameter: the
mean percentage change in dynamic parameter values, called∆.
Specifically, given∆, an increment factor, , was randomly
chosen from a uniform distribution with a range [0.5∆, 1.5∆],
and its sign had a 0.5 probability of being positive (but selected
to guarantee that the dynamic parameter stays within its range).
Then, a dynamic parameter for iteration , say , was given
by: .

To examine the performance of the On-Off approach, first
consider the results of scheduling a ten-node random task graph
using the two execution profiles. The parameters of the ten-
node random task graph are shown in Figure 2. Detailed results
of using the four approaches for Profile B are shown in Table 2.
Due to space limitations, results for Profile A are not shown
here but can be found in [7]. Below are the definitions of the
data columns.
• t(M[i–1]): this is the task execution time of iteration using

the mappingchosenat the end of iteration , denoted by
M[i–1]. Here, it should be noted that at the end of iteration

, a new mapping will be determined but such a mapping
would not be used for iteration if the reconfiguration time
offsets the gain of remapping. Thus, a mapping chosen at the
end of iteration could be a new mapping or the same
mapping used for iteration . In the case of On-Off, the

new mapping considered is the mapping corresponding to the
scenario closest to the parameters at iteration in the
mapping table. In the case of ECT, the new mapping
considered is the one determined using the ECT algorithm
with the exact dynamic parameters at iteration .

• t’(O[i–1]): this is the task execution time of the mapping
stored in the off-line mapping table, denoted byO[i–1], of a
scenario with dynamic parameters closest to the dynamic
parameters at iteration . This is the value stored in the
mapping table, instead of the task execution time by applying
O[i–1] to the dynamic parameters at iteration . The
mapping O[i–1] may or may not be chosen for iteration .

• RC: the reconfiguration time, if remapping is performed.
• t(E[i–1]): this is the execution time of the mapping

determined using the ECT algorithm with the parameters at
iteration , denoted byE[i-1], which may or may not be
chosen for iteration .

• t(G[i–1]): this is the task execution time of iteration by
applying the mapping determined by the GA with dynamic
parameters at iteration , disregarding whether the
remapping is justified by the gain or not. Also, the mapping
found at iteration is incorporated in the initial
population of the GA at iteration . Reconfiguration time is
not counted in this approach. Again, thisGA On-line method
is included for comparison only because applying the GA on-
line for dynamic scheduling is not feasible due to the long
execution time required by the GA. It should be noted that
for both Ideal and GA On-line, reconfiguration time is not
considered.

• t(G[i]): this is the task execution time of iteration
determined using the GA with the exact dynamic parameters
at iteration . This is, therefore, the ideal case which is
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Table 1: Execution profiles of dynamic parameters:
Profile A (average percentage change in dynamic
parameter values∆ = 5%) and Profile B (∆ = 40%).
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impossible in practice because the actual values of the
dynamic parameters for iteration cannot be known before
the execution of iteration begins. Furthermore, the
solutions found by both the On-Off and the GA On-line
approaches are also incorporated into the initial population of
the GA. This is done in order to determine the “best” solution
as a reference for comparison.

As can be seen from Table 2, the On-Off approach of
dynamically using off-line derived mappings generated much
smaller total execution time (995,987) compared to that of
using the ECT algorithm (1,447,666). The On-Off approach
consistently resulted in performance comparable to the
infeasible GA On-line scheme and was only marginally
outperformed by the Ideal (but impossible) method. Indeed, one
very interesting observation is that at some iterations, the On-
Off approach generated shorter mapping execution time than
the GA On-line due to the On-Off approach being more robust

to changes.
Some additional experiments using larger graphs were also

conducted to further test the effectiveness of the sampling
strategy used. Specifically, ten 50-node random graphs were
used and the following different approaches to generate
representative mappings were compared:
• the mid-point of the hyper-rectangle is chosen as the only

sample scenario for generating the representative mapping
(calledScheme 1);

• a randomly selected point within the hyper-rectangle is
chosen as the only sample scenario (calledScheme 2);

• ten sample scenarios in the hyper-rectangle are examined but
for each sample scenario the GA is executed without
incorporating the solution generated by the ECT algorithm as
one of the members in the initial population (and the
mappings of the ten sample scenarios are applied to all other
sample scenarios in the hyper-rectangle, with the mapping
giving the best average performance selected) (called
Scheme 3);

• the approach used throughout all previous experiments—like
Scheme 3 except the GA is executed with the ECT solution
as one of the seed chromosomes (calledScheme 4).

The above four approaches were applied to the ten 50-node
random graphs using Profile A and the total mapping execution
times were noted. The averages of these execution times were
determined and the results were normalized with respect to
those of Scheme 4. The results obtained are as follows: 1.23
(Scheme 1), 1.19 (Scheme 2), 1.16 (Scheme 3), and 1.00
(Scheme 4). Thus, using just one sample scenario is not as
effective as using ten. The degradations are indeed quite
significant. Furthermore, the degradation is higher if the mid-
point instead of a randomly selected point within the hyper-
rectangle is used. These results lead to the conclusion that the
relationship between the parameters space and the mappings
space is highly irregular and, as such, more random sample
scenarios are needed to more accurately “characterize” a good
representative mapping for a hyper-rectangle. Finally, as
expected, the solutions of the GA without using mappings
determined by ECT are worse. Given these findings, Scheme 4
was used throughout all subsequent experiments.

To investigate the effects of graph sizes and structures on
the performance of the On-Off approach, the experiments were
repeated for larger task graphs. As can be seen from Figure 3,

Figure 2: (a) Coefficients of the subtask execution time equation and heterogeneity factorshiu for
the subtask execution times; (b) coefficients of the inter-subtask communication data equations.
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the total execution times of On-Off, GA On-line, and Ideal for
totally random task graphs are consistently of similar values for
all graph sizes. However, the ECT approach performed much
worse, especially for large graphs with sizes 100 and 200 (in
order to enhance the readability of the plots, the data for 200-
node graphs of the ECT algorithm were excluded). An
explanation for this phenomenon is that because the ECT
algorithm employs a strictly greedy scheduling method, the
effect of making mistakes at early stages of scheduling can
propagate until the whole graph is completely scheduled. The
adverse impact of such a greedy approach can be more profound
for larger graphs. For other regular graphs, in most cases the
performance of On-Off was only slightly inferior to the GA On-
line, which in turn was slightly outperformed by the Ideal.

An experiment was also conducted to explore the effect of
increasing the reconfiguration time on the performance of the
On-Off approach. The total execution times of the ECT and On-
Off approaches remained approximately constant despite the
fact that the reconfiguration time varied over a wide range (the
GA On-line and Ideal results are independent of reconfiguration
time). This is due to the observation that a higher
reconfiguration time simply prohibited the attempts to switch to
a new mapping from one iteration to another. If reconfiguration
cost is small, more remappings are performed but the aggregate
reconfiguration costs do not considerably affect the total time.

5  Conclusions

A novel strategy is presented for partitioning and sampling
the dynamic parameter space of a heterogeneous application
within the context of a semi-static mapping methodology. A
summary of the extensive performance evaluation of this
strategy is given (details in [7]). Experimental results indicate
that the semi-static approach is effective in that it consistently
outperformed a fast dynamic mapping heuristic, and gave
reasonable performance compared with the infeasible approach
of directly using the genetic algorithm on-line for a wide range
of task graph structures. A limitation of such a semi-static
approach is the additional off-line execution time needed to
build the mapping table. However, because the mapping table is
built off-line and the target heterogeneous task graph is used as
a production job, some extra time is affordable.
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Figure 3: Total execution times for Profile B.

(a) random task graphs (b) in-tree task graphs (c) out-tree task graphs (d) fork-join task graphs


